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A B S T R A C T

Light profoundly affects the behavior and physiology of almost all animals, including humans. One such effect in
humans is that the level of illumination during the day positively contributes to affective well-being and cog-
nitive function. However, the neural mechanisms underlying the effects of daytime light intensity on affect and
cognition are poorly understood. One barrier for progress in this area is that almost all laboratory animal models
studied are nocturnal. There are substantial differences in how light affects nocturnal and diurnal species, e.g.,
light induces sleep in nocturnal mammals but wakefulness in diurnal ones, like humans. Therefore, the me-
chanisms through which light modulates affect and cognition must differ between the chronotypes. To further
understand the neural pathways mediating how ambient light modulates affect and cognition, our recent work
has developed a diurnal rodent model, the Nile grass rat (Arvicanthis niloticus), in which daytime light intensity is
chronically manipulated in grass rats housed under the same 12:12 hour light/dark cycle. This simulates lighting
conditions during summer-like bright sunny days vs. winter-like dim cloudy days. Our work has revealed that
chronic dim daylight intensity results in higher depression- and anxiety-like behaviors, as well as impaired
spatial learning and memory. Furthermore, we have found that hypothalamic orexin is a mediator of these
effects. A better understanding of how changes in daytime light intensity impinge upon the neural substrates
involved in affect and cognition will lead to novel preventive and therapeutic strategies for seasonal affective
disorder, as well as for non-seasonal emotional or cognitive impairments associated with light deficiency.

1. Introduction

Light is a highly salient environmental factor influencing the brain
and behavior beyond its role in visual perception. In mammalian spe-
cies including humans, the so-called non-image forming effects of light
include entraining circadian rhythms, mediating pupillary reflexes,
regulating peripheral physiological events, promoting alertness or
arousal, and modulating affect and cognition (Foster and Hankins,
2002; Fu et al., 2005). The daily light/dark cycle is the most reliable
and predictable cue to entrain the circadian system (Daan and Aschoff,
2001). This system coordinates daily rhythms in our bodily functions to
ensure that the activities among the various tissues and organs are
synchronized with each other and with the day/night or light/dark
cycles (Hastings et al., 2003).

While the illuminance necessary for entrainment of circadian
rhythms varies among species, for humans, light as low as 120 lx is
sufficient (Zeitzer et al., 2000). Light in our natural environment is
much brighter, though, with examples being>1000 lx in a typical re-
tail store or ~100,000 lx outside on a bright sunny midday (Turner

et al., 2010). Such different levels of illumination during the day have
been found to influence human behavior and physiology. Compared to
low daytime light intensity, bright illumination during the day in-
creases arousal and enhances attention (Altimus et al., 2008; Ruger
et al., 2006), activates digestive activity (Lee et al., 2001; Sone et al.,
2003), suppresses plasma cortisol levels (Jung et al., 2010), and in-
creases the nocturnal rise of melatonin (Park and Tokura, 1999). Fur-
thermore, for patients that recently underwent spinal surgery, more
sunlight in their hospital rooms decreased their pain and analgesic use
(Walch et al., 2005), and heart attack patients in sunny hospital rooms
have relatively shorter hospital stays and higher survival rates
(Beauchemin and Hays, 1998). As will be discussed below as the focus
of this review, brighter daytime illumination has also been found to
have positive effects on affective well-being and cognitive function in
humans, while insufficient light exposure during the day can lead to
affective disorders and cognitive impairments.
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2. Daylight modulates affect and cognition in humans

The impact of light on our affective state is best exemplified by
seasonal affective disorder (SAD) and the effectiveness of bright light
therapy in preventing, or at least alleviating, many of its symptoms
(Lam et al., 2006; Nussbaumer et al., 2015; Rosenthal et al., 1984;
Terman and Terman, 2005). SAD is a major depressive disorder oc-
curring with a seasonal pattern that affects millions of Americans every
year (Howland, 2009). Affected individuals experience regularly re-
curring episodes of depression and anxiety each fall and winter, fol-
lowed by spontaneous remission in spring and summer (Rosenthal
et al., 1984). Bright light therapy is effective in alleviating the symp-
toms of SAD, suggesting that the cause of this disorder lies in the sea-
sonal fluctuation in lighting condition. In addition to SAD, bright light
therapy has been successfully used to treat non-seasonal depression,
suggesting modulatory effects of light on mood regardless of the season
(Even et al., 2008; Golden et al., 2005; Tuunainen et al., 2004). A recent
study showed that for hospitalized depression patients, those staying in
southeast-facing rooms recovered much faster compared those who
stayed in northwest-facing rooms (average of 29.2 ± 26.8 versus
58.8 ± 42.0 days to recover) (Gbyl et al., 2016). The only factor that
could account for the speedy recovery in southeast-facing patients is
that their rooms were much brighter compared to those in the other
side of the building, and the difference in recovery time was up to 20-
fold at any given time of the year. A group of retinal ganglion cells
containing the photoreceptor molecule, melanopsin, play a critical role
in detecting light intensity and mediating the non-image forming effects
of light (Hattar et al., 2003). Indeed, homozygosity for missense single-
nucleotide polymorphisms in the melanopsin gene increases the risk of
SAD by over 500%, suggesting deficits in non-visual pathways from the
retina as risk factors that may predispose some individuals to the dis-
order (Roecklein et al., 2009). Retinal disease that leads to visual im-
pairment is also consistently associated with depression and anxiety
(Augustin et al., 2007; Ribeiro et al., 2015). Although in the latter cases
the high prevalence of depression and anxiety could very reasonably be
secondary to the visual impairments, the direct impact of diminished
non-image forming photic stimulation to the brain should not be un-
derestimated.

In addition to depression and anxiety, SAD patients also experience
cognitive impairments including slower cognitive processing as well as
impaired working and spatial memory (O'Brien et al., 1993; Sullivan
and Payne, 2007). Seasonal effects on cognitive function have also been
documented in non-clinical populations. A recent fMRI study revealed
seasonal fluctuation in brain activity during cognitive tasks, such that
the brain responses to a sustained attention task were highest in
summer and lowest in winter, while the responses to working memory
were highest in the fall and lowest in spring (Meyer et al., 2016). The
impact of light on cognitive function has also been documented in
human populations independent of season. As examples, brighter illu-
mination in the classroom enhances math and reading performance of
elementary school students (Barkmann et al., 2012; Heschong, 2002;
Heschong et al., 2002; Mott et al., 2012), bright office lighting increases
performance of adults in the workplace (Baron et al., 1992; Mills et al.,

2007; Viola et al., 2008), and bright light therapy improves cognition in
mild/early-stage dementia in some studies (Forbes et al., 2009;
Riemersma-van der Lek et al., 2008; Yamadera et al., 2000).

3. Studying a diurnal animal is essential for elucidating the
mechanisms responsible for daylight's modulation of human affect
and cognition

Evidence from the literature on both clinical and non-clinical po-
pulations summarized above has firmly established that environmental
lighting condition is an important modulator of mood and cognition in
humans. However, how bright daylight produces its positive effects on
affective and cognitive outcomes is poorly understood, and research in
this area has been greatly hindered by a lack of an appropriate animal
to study such questions. In contrast to humans that are diurnal and,
thus, most active during the day, the most commonly studied laboratory
rodents including mice or rats are nocturnal and active at night.
Although light entrains or resets circadian rhythms in a manner that is
very similar or even the same between nocturnal and diurnal mammals,
the circadian-independent direct effects of light on the brain and be-
havior are very different (Challet, 2007; Minors et al., 1991; Smale
et al., 2003; Yan et al., 2018). Most saliently, light increases physical
activity and promotes arousal in diurnal mammals, while light inhibits
activity and promotes sleep in nocturnal ones (Redlin, 2001). There-
fore, studying a diurnal animal is absolutely essential to fully under-
stand the impact of ambient light on the human brain, behavior, and
physiology through light's circadian-dependent and circadian-in-
dependent mechanisms (Fig. 1).

A small number of diurnal rodent species are available to study in
laboratory settings and include degus (Octodon degus), Mongolian ger-
bils (Meriones unguiculatus), and Nile grass rats (Arvicanthis niloticus). Of
these diurnal rodents, Nile grass rats have the highest diurnality index
at 87%, i.e., the percentage of daily activity occurring during the
daytime (Refinetti, 2008). Work from our group discussed below uti-
lizing male Nile grass rats (and very recently also involving females) has
established that daytime lighting condition influences their emotional
and cognitive behaviors in a way similar to that seen in humans, such
that insufficient light exposure during the day leads to increased de-
pression- and anxiety-like behaviors, as well as impaired spatial
learning and memory.

4. Daytime light deficiency impairs affective behaviors and
cognition in grass rats in ways analogous to those seen in humans

Depression-like behaviors have been consistently observed by our
group and others in diurnal grass rats housed in winter-like lighting
conditions involving short day-length of either 5:19 or 8:16 hour light/
dark (LD) cycle (Ashkenazy-Frolinger et al., 2009; Leach et al., 2013b),
or involving low light intensity even if the animals are maintained on a
12:12 hour LD cycle (Leach et al., 2013a). These results clearly de-
monstrate that not only does winter-like short day length, but also
winter-like low daylight intensity, contributes to the behavioral deficits.
The depression-like behavior displayed by grass rats housed under

Fig. 1. Hypothetical model showing how light modulates af-
fect (as well as cognition) through both circadian and non-
circadian systems. Light resets the principal circadian clock
located in the suprachiasmatic nucleus (SCN) of both diurnal
and nocturnal mammals. Light activation of the orexinergic
system (OX) is unique to diurnal mammals and, thus, can only
be studied in a diurnal model such as Nile grass rats. Both
systems regulate functions of the monoaminergic system,
subcortical regions of the limbic system including the hippo-
campus, and the prefrontal cortex (PFC) – all of which are
involved in regulating affect and cognition.
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winter-like lighting conditions also strongly supports the face validity of
the diurnal grass rat as a model of SAD. Following these initial findings,
we focused our investigation using the low light intensity paradigm
instead of the short photoperiod due to the fact that it is much more
relevant to the seasonal changes in light intensity experienced by hu-
mans. Importantly, because most humans around the globe use artificial
lights, the duration of daily light exposure we experience across seasons
does not fluctuate nearly as much as the quality/intensity of light. In a
study monitoring light exposure in a group of subjects at the 45° N
latitude (Quebec, Canada) where the natural day-length fluctuates be-
tween 8 and 16 hours across the year, the total duration of light ex-
posure experienced by the subjects was not significantly different be-
tween winter and summer (14.6 ± 1.2 vs. 14.9 ± 1.5 h). However,
the duration of light above 1000 lx was greatly reduced in winter
compared to summer (2.6 ± 1.2 vs. 0.4 ± 0.3 h) (Hebert et al., 1998).
Therefore, the change in daylight intensity over the seasons is a more
salient factor than daylight duration for driving seasonality in modern
humans.

To assess the effects of daytime light intensity on affective and
cognitive responses, we housed diurnal grass rats under a 12:12 hour
LD condition with either bright (1000 lx, brLD) or dim light (50 lx,
dimLD) during the day, thus resembling the lighting conditions that
many of us experience in summer or winter, respectively. It should be
noted that the light exposure is voluntary because the animals can al-
ways avoid the light by hiding in a PVC tube provided as enrichment in
their home cages. Even so, we have often observed that the animals in
the brLD condition stand on top of the PVC tube to be closer to the light
source, suggesting that the light at 1000 lx (which is higher than the
standard for most laboratory rodent animal facilities) is not aversive but
rather desirable for the grass rats. Following 4 weeks in each lighting
condition, the animals underwent behavioral testing. Consistent to
what has been observed in humans suffering with SAD, compared to the
control group housed in the summer-like brLD condition, grass rats
housed in winter-like dimLD condition showed increased depression-
and anxiety-like behaviors. Depression-like behaviors were assessed in
the classic forced swim test (FST) and sweet solution preference (SSP)
test (Leach et al., 2013a). In the FST, the dimLD animals showed longer
immobility and less climbing/escaping, indicating more behavioral
despair (Fig. 2). In a SSP test that permits free ingestion of 1% saccharin
and tap water, the SSP of dimLD animals was significantly lower than
that of brLD animals, indicating anhedonia. Anxiety-like behaviors
were assessed in open field and marble burying tests (Ikeno et al.,
2016). In the open field test, animals in the dimLD group had fewer
center entries and spent less time at the center of the testing arena
(Fig. 3). In the marble burying test, the dimLD group buried twice many
marbles, compared to the brLD group. The behavioral responses in both
tests reveal anxiety-like phenotype of animals housed in dimLD.

We also examined the effects of daytime light intensity on spatial
learning and memory using the hippocampal-dependent Morris water
maze (MWM) task (Soler et al., 2018). Lighting condition affected the
latency for the animals to locate the platform across the training days
(2 trials/day for 5 days), with the effect being significant only for trial 1
(with 24-hours between trials), but not trial 2 (30 seconds after trial 1),
indicating that retention of the memory for the platform location was
impaired in the dimLD animals after a 24-hour interval, but that their
working memory was intact (Fig. 4). During the 60-second probe test
administered 24 h after the last training day, the dimLD animals spent
~15 s of the testing period in the goal quadrant, which is at chance
level, indicating impairments of spatial memory (Fig. 4). It is note-
worthy that there was no difference in thigmotaxis (time spent swim-
ming next to the wall and often used as a measure of anxiety) between
the two groups during the probe test. This finding seems inconsistent
with the anxiety-like phenotype of dimLD animals we observed in
previous studies, which included increased thigmotaxis by dimLD ani-
mals during open field and forced swim tests (Deats et al., 2014; Ikeno
et al., 2016). The different behavioral response could be due to the fact

that: 1) the pool for the MWM task is much larger than the open field
arena or the pool used for the forced swim testing, and 2) the MWM
task is goal-oriented and the animals are motivated to find the platform
hidden near the center of the pool, so the testing conditions are biased
against the display of thigmotaxic behavior.

5. The circadian system is not responsible for the behavioral
impairments seen in grass rats housed in winter-like dimLD
conditions

The current prevailing theory on the etiology of SAD continues to be
the phase-shifting hypothesis, which proposes that the episodes of de-
pression are caused by misalignments between one's circadian rhythm
and habitual sleep time (Lewy et al., 2007). The clinical practice of
using light therapy is based on this theory (Lewy, 2009; Terman and
Terman, 2005), which is derived from the fact that light is undoubtedly
the most salient cue for resetting circadian rhythms (Daan and Aschoff,
2001). However, the light intensity required for effective light therapy
in humans (> 5000 lx (Terman et al., 1996; Terman and Terman,

Fig. 2. Daytime dim light housing leads to depression-like behavioral re-
sponses. A. Diagrams depicting the bright light:dark (brLD) and dim light:dark
(dimLD) conditions used to study behavior in Nile grass rats. B. Bar graphs show
the duration of immobility, escaping, and swimming by grass rats during forced
swim tests (FST), indicating behavioral despair in the animals housed in dimLD.
C. The changes in preference for saccharine solution by grass rats in sweet
solution preference (SSP) tests. Animals in brLD showed a steady increase in
their SSP, while dimLD group did not show an increase of SSP over 3 days of
exposure, indicating anhedonia. Results are displayed as mean ± SEM. * in-
dicates p < 0.05.
(B and C are modified from Fig. 1 in Leach et al., 2013a).
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2005)) is known to greatly exceed that needed to shift our circadian
rhythms (120 lx (Zeitzer et al., 2000)). Thus, the role that the circadian
system plays in SAD is not completely clear.

To determine if circadian rhythm disruption underlies the

behavioral impairments seen in our grass rats housed under dimLD
conditions, we compared their daily rhythms in locomotor activity to
animals in the brLD condition (Fig. 5A; Leach et al., 2013a). There were
no significant differences between the two conditions in terms of the
animals' total daily activity, day/night activity ratio, and entrainment
phase angle (i.e., the activity onset and offset time in reference to lights
on and off, respectively). The only significant difference found was in
the entrainment stability measured by the activity offset, with greater
variability in the timing of the end point of daily activity for animals
housed in dimLD compared to those in brLD. However, there was no
difference when the entrainment stability was assessed based on ac-
tivity onset time. Therefore, the analysis of locomotor activity revealed
no major differences in daily rhythms that could have contributed to
the behavioral impairments in the dimLD group (Leach et al., 2013a).

The grass rat model of SAD also allowed us to directly examine the
functioning of circadian oscillators, including the principal brain clock
within the suprachiasmatic nucleus (SCN). We examined the expression
of the protein product of the canonic clock gene PER2 in the SCN across
a daily cycle in grass rats housed in brLD or dimLD and found no sig-
nificant differences between the groups (Fig. 5B, Ikeno and Yan, un-
published results).

It is well established that circadian rhythm disruption is a causal
factor for mood disorders and cognitive impairments (Evans and
Davidson, 2013; McClung, 2011; Wright et al., 2012). However, the
rather subtle differences in circadian rhythms between the brLD and
dimLD grass rats, and the much higher intensity required for the anti-
depressant effects of light therapy than that for circadian entrainment
in humans (i.e. 5000 vs. 120 lx), collectively suggest that there are
mechanisms in addition to - and more importantly independent of -
circadian disruption that contribute to the behavioral deficits caused by
daytime light deficiency.

Fig. 3. Daytime dim light housing leads to increased anxiety-like behavior. (A,
B) Representative tracks in an open field by grass rats housed in the brLD (A)
and dimLD (B) conditions. The center/perimeter boundaries are shown in grey
lines. (C) Total number of center entries. (D) Total time spent in the center.
Results are shown as mean ± SEM. *p < 0.01.
(Adapted from Fig. 1 in Ikeno et al., 2016 with permission).

Fig. 4. Impaired MWM performance of grass rats
housed in dimLD compared to those in brLD condi-
tion. (A) Latency of animals to locate the platform
during trial 1 (24-hour delay) over the five training
days. Grass rats housed in brLD were able to locate
the platform significantly faster in the than those
housed in dimLD. (B) Latency of animals to locate
the platform during trial 2 (30-second delay); there
were no significant differences between the two
groups. (C) Representative track plots of a grass rat
in each lighting condition during the probe trial
(with goal quadrant highlighted). (D) Grass rats
housed in brLD nearly spent twice as much time
searching for the platform in the goal quadrant in the
probe test when compared to grass rats in the dimLD
group. *p < 0.05.
(Adapted from Fig. 1 in Soler et al., 2018 with per-
mission).
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6. Does the orexin system underlie the behavioral deficits caused
by daytime light deficiency?

Orexin, also known as hypocretin, has two isoforms (orexin A and
orexin B) that have been implicated in many important physiological
functions including wakefulness, energy homeostasis, reward, emotion,
and cognition (Gerashchenko and Shiromani, 2004; Tsujino and
Sakurai, 2009). The sequence and structure of orexin peptides are well
conserved across mammals such as mice, rats, dogs, pigs and humans
(Sakurai, 2005). Mood and anxiety disorders are prevalent in narco-
leptic patients that have diminished central orexin levels (Fortuyn et al.,
2010; Ohayon, 2013). Lower orexin levels in cerebrospinal fluid have
also been reported in patients suffering from major depressive disorder
or comorbid depression and anxiety ((Brundin et al., 2007a,b, 2009;
Johnson et al., 2010; Rotter et al., 2011) also see (Schmidt et al.,
2011)). In laboratory animal models of depression, reduced brain or-
exin peptide content and a reduced number or size of orexin neurons
have been reported (Allard et al., 2004; Nocjar et al., 2012). There is
also evidence for the involvement of the orexinergic system in cogni-
tion. Dysfunction in the orexin system has been implicated in dementia
and in cognitive decline in post-stroke patients (Song et al., 2015;
Wennstrom et al., 2012). In nocturnal rodents, orexin has been shown
to modulate hippocampal-dependent spatial learning (Sil'kis, 2013).
Orexin A also reverses the impaired spatial learning and memory in a
mouse epilepsy model (Zhao et al., 2014), and improves retention in
avoidance learning (Jaeger et al., 2002). There are two types of G-
protein-coupled receptors that bind orexin. Type 1 receptors (OX1R)
show higher affinity for orexin A, while type 2 receptors (OX2R) have
similar affinity to both orexin A and B (Sakurai et al., 1998).

Administering a selective OX1R antagonist into the CA1 impairs
learning in the MWM task (Akbari et al., 2006, 2007), suggesting that
OX1R-mediated signaling in CA1 is involved in spatial learning.

Most orexin-containing neurons in the brain are localized in the
lateral hypothalamus of humans (Aziz et al., 2008; Thannickal et al.,
2009), as well as in diurnal and nocturnal rodents (Donlin et al., 2014;
Nixon and Smale, 2007). In both laboratory rats and grass rats, there
are direct retinal projections to the lateral hypothalamus where most
orexinergic cells are found (Gaillard et al., 2013; Johnson et al., 1988;
Leak and Moore, 1997). These hypothalamic orexin neurons also re-
ceive retinal input indirectly through the suprachiasmatic nucleus in
both species (Deurveilher and Semba, 2005; Schwartz et al., 2011). In
diurnal grass rats, we have found that acute light exposure activates
orexin neurons (as revealed by increased Fos expression), indicating
that these cells are light responsive (Adidharma et al., 2012). We then
assessed the effects of daytime illumination level on the orexin neurons.
Compared to brDL grass rats housed for 4 weeks in the bright daylight
conditions, the dimDL animals had fewer orexin-ir cells in the hy-
pothalamus and lower orexin-ir fiber density in the midbrain dorsal
raphe nucleus (Deats et al., 2014), suggesting decreased central orexin
levels and attenuated orexinergic output (Fig. 6). Furthermore, ad-
ministering a selective OX1R antagonist to animals in the brLD condi-
tion increased their depression- and anxiety-like behaviors (Deats et al.,
2014), suggesting that functioning orexin-OX1R pathways are critical
for the absence of negative affective behaviors in grass rats.

Critically important for modulating depression, anxiety, learning
and memory is that orexinergic cells project heavily to the prefrontal
cortex, monoaminergic systems, and hippocampus in both nocturnal
laboratory rats and diurnal grass rats (Nixon and Smale, 2007; Peyron

Fig. 5. Daily rhythms in locomotor activity and expression of the clock protein PER2 in the SCN are comparable between grass rats housed in brLD or dimLD
conditions. (A) Actograms depict representative daily activity of a grass rat housed in each condition over two weeks. Daily activity is double-blotted so each
horizontal line shows activity over two days. Each vertical bar shows the amount of activity over a 10-minute bin. In both conditions, the majority of activity
occurred during daytime. (B) PER2 immunoreactivity in the SCN. Scale bar, 100 μm.
(Adapted from Fig. 3 in Leach et al., 2013a).
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et al., 1998; Fig. 1). Using diurnal grass rats, we have investigated the
effects of daytime light intensity on some targets of the hypothalamic
orexin cells, to explore the potential downstream pathways from light
via orexin neurons in mediating the effects of daytime illumination on
affect and cognition.

6.1. The dorsal raphe nucleus (DRN)

Orexin cells project heavily to central monoaminergic systems in-
cluding the serotonin (5-HT)-rich DRN (Nixon and Smale, 2007; Peyron
et al., 1998), where it induces excitatory responses in 5-HTergic cells
(Soffin et al., 2004) and stimulates local release of 5-HT (Tao et al.,
2006). Dysfunction in the central 5-HT system has long been implicated
in the pathophysiology of SAD. SAD patients in clinical remission will
relapse following depletion of the 5-HT precursor, tryptophan (Kulikov
and Popova, 2015; Lam et al., 2001; Levitan, 2007; Neumeister et al.,
2001). There are also seasonal variations in the 5-HT system. In hu-
mans, hypothalamic 5-HT levels (Carlsson et al., 1980), 5-HT turnover
as measured by its metabolite levels in cerebrospinal fluid (Brewerton
et al., 1988; Luykx et al., 2013), and availability of 5-HT1A receptors in
a variety of subcortical sites (Matheson et al., 2015) are lowest in
winter, while 5-HT transporter binding potential in cortical and sub-
cortical sites is highest in both fall and winter (Praschak-Rieder et al.,
2008). It has also been shown that bright sunlight rapidly increases 5-
HT production, which is correlated with the duration and intensity of
light exposure (Lambert et al., 2002). In diurnal grass rats, we found
that dimLD animals had fewer 5-HT-ir cells at middle and caudal levels
of the DRN, and lower 5-HT-ir fiber density in the medial cingulate
cortex, when compared to brLD animals (Leach et al., 2013a). This
decrease in midbrain and frontocortical 5-HT cells and fibers in dimLD
animals is consistent with our finding that bright light increases im-
mediate-early gene activity in the grass rat DRN (Adidharma et al.,
2012). Although a direct retinal projection to the dorsal raphe has been
reported in many species including laboratory rats, degus, gerbils, tree
shrews, and tufted capuchin monkeys (Fite and Janusonis, 2001; Fite
et al., 1999; Frazao et al., 2008; Ren et al., 2013; Reuss and Fuchs,
2000; Shen and Semba, 1994), no direct retinal innervation of the DRN
has been found in laboratory mice, ground squirrels, or grass rats
(Gaillard et al., 2013; Hattar et al., 2006; Major et al., 2003; Morin and

Studholme, 2014). Consistent with the anatomy, we have found that
systemic injection of the selective OX1R antagonist, SB-334867, at-
tenuates light-activated Fos expression in the DRN by almost 50%,
suggesting that the light-induced activation of the DRN in grass rats is
indirectly mediated by the OXA-OX1R pathway (Adidharma et al.,
2012).

6.2. Hippocampus

The hippocampus has long been a focus of studies on learning and
memory (Jarrard, 1993; Squire, 1992), and has also been implicated in
depression (Campbell and Macqueen, 2004; MacQueen and Frodl,
2011) and anxiety (Bannerman et al., 2004; Shin and Liberzon, 2010).
Orexinergic cells project directly to the hippocampus in both nocturnal
laboratory rats and diurnal grass rats (Nixon and Smale, 2007; Peyron
et al., 1998). Furthermore, orexin receptors are expressed in the hip-
pocampus of both rodents (Ikeno and Yan, 2018; Marcus et al., 2001;
Trivedi et al., 1998). In the grass rats, we examined hippocampal ex-
pression of the neurotrophic factor, BDNF, and CA1 dendritic spine
density (Soler et al., 2018) and found a significant reduction in the
number of hippocampal BDNF-ir cells in the dimLD condition that was
specific to the CA1 subregion. This finding was confirmed by mea-
surements of BDNF mRNA and protein using qPCR and Western blot,
respectively. There was also a reduction in CA1 apical dendritic spine
density in the dimLD group compared to brLD group. Interestingly,
when a group of dimLD animals were transferred into the brLD con-
dition for 4 weeks, both the BDNF expression and CA1 dendritic spine
density rose. Hippocampal BDNF and spine density have been im-
plicated in spatial learning and memory (Bekinschtein et al., 2008;
Matsuzaki et al., 2004; Tsien et al., 1996) as well as in depression
(Castren et al., 2007; Duman, 2002). Our findings revealed that daytime
illumination modulates structural plasticity in the hippocampus, which
likely contributes to the differential depression-like behaviors and
spatial learning of grass rats housed in dim and bright days.

6.3. HPA axis

Dysregulation of the HPA axis has often been implicated in affective
disorders (Belvederi Murri et al., 2016; Pariante and Lightman, 2008;

Fig. 6. Daytime dim light housing (dimLD) leads to
attenuated orexin immunoreactivity in the hypotha-
lamus (upper panel) and the dorsal raphe nucleus
(lower panel) compared to daytime bright light
housing (brLD). aq, cerebral aqueduct; mlf, medial
longitudinal fasciculus. Scale bars= 250 μm.
(Modified from Figs. 1 and 2 in Deats et al., 2014
with permission).
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Zorn et al., 2017). Although we have found no differences between
grass rats housed in brLD and dimLD conditions in their basal plasma
corticosterone (CORT) at daytime or nighttime, nor in their adrenal
gland weights, the dimLD group had relatively higher plasma CORT
following an acute mild stressor (a marble-burying test (Ikeno et al.,
2016)). The higher CORT levels in the dimLD group were accompanied
by higher Fos immunoreactivity in the CA3 and dentate gyrus of the
hippocampus, suggesting abnormal hippocampal regulation of the HPA
axis in the dimLD animals. In support, we found that dimLD grass rats
had higher hippocampal expression of the mRNAs for mineralocorticoid
receptors (MR) at ZT2 and ZT14, and glucocorticoid receptors (GR) at
ZT2, compared to that found in the brLD group. No such differences
betwen groups in MR or GR mRNAs were found in the PVN (Ikeno et al.,
2016). Because limiting light exposure via short photoperiod has pre-
viously been seen to increase hippocampal MR and GR expression in
nocturnal rodents (Lance et al., 1998; Pyter et al., 2007), the upregu-
lation in the hippocampus of the dimLD grass rats was unexpected.
Higher hippocampal MR and GR expression would be expected to result
in less initial CORT release and stronger negative feedback on the HPA
axis in response to a stressor, rather than the higher plasma CORT we
observed in the dimLD group. However, we measured CORT only at one
time point (1 h) after the animals encountered the mild stressor. A
complete time course of sampling plasma CORT from before the stress
induction through complete recovery will be necessary to evaluate how
changes in MR and GR mRNA are related to the HPA axis regulation in
brDL and dimDL grass rats. Nonetheless, our results collectively suggest
that the dimLD condition is associated with enhanced stress responding
at multiple levels including in the animals' behavior, hormone secre-
tion, and hippocampal gene expression.

7. Conclusions and future questions

Using the diurnal Nile grass rat, we have found that daytime light
intensity level has significant impacts on affective behaviors and on
spatial learning and memory. Brighter daytime illumination reduces
depression- and anxiety-like behaviors and enhances spatial memory,
while relatively dim light during the daytime leads to increased de-
pression- and anxiety-like behaviors and impaired spatial memory.
These behavioral responses observed in grass rats mirror what have
been documented in humans, with bright light associated with a lack of
negative affect and better cognitive performance. Thus, the grass rat
provides a unique opportunity to reveal the neural mechanisms through
which daytime light intensity modulates affect and cognition in hu-
mans. Current available data suggest that the hypothalamic orexin
system is an important mediator of these lighting effects, by responding
to changes in the level of daytime illumination and conveying such
information to other brain regions involved in affective behaviors and
spatial memory (Fig. 1). Light-induced activation of orexin neurons is
unique for diurnal species (Adidharma et al., 2012) because in noc-
turnal rodents, orexin neurons are not activated by light (Mendoza
et al., 2010) and instead are activated by darkness (Marston et al.,
2008), which represents an arousal cue for these and other nocturnal
animals. Interestingly, there are a handful of chronotype differences in
the distribution of orexin receptors, especially OX1R, in brain regions
implicated in sleep/wakefulness, affect, and cognition (Ikeno and Yan,
2018; Marcus et al., 2001; Trivedi et al., 1998). For instance, in the
caudate putamen and ventral tuberomammillary nucleus, OX1R ex-
pression was detected in diurnal grass rats but not in nocturnal la-
boratory mice or rats; while in the medial division of the posteromedial
bed nucleus of the stria terminalis OX1R was detected in mice but not in
grass rats. These differences may eventually be found to underlie dif-
ferent roles for the OX1R in processing light in diurnal and nocturnal
species.

Although our work has focused on the effects of differential light
intensity, other parameters of ambient daylight including the duration
of light exposure or the spectrum of light, are known to play a role in

affective and cognitive behaviors in some diurnal and nocturnal rodents
(Einat et al., 2006; Itzhacki et al., 2018; Leach et al., 2013a,b;
Prendergast and Kay, 2008; Prendergast and Nelson, 2005; Pyter et al.,
2005; Steinman et al., 2011), and these parameters will be explored in
our future studies of grass rats. It should also be noted that the work
discussed here is based on results obtained from male grass rats. We are
currently investigating the effects of daytime light intensity in female
grass rats, and the initial findings have suggested some intriguing sex
differences. For instance, following the same housing condition in
dimLD, the spatial memory deficits in female grass rats are even more
severe than those found in males (Yan et al., 2017), and the effects of
daytime light intensity on the levels orexin receptor expression also
appear to be sex-specific in some brain regions (Tang et al., 2018).

In sum, the work from our group and others summarized in this
review is a first step toward a better understanding of how light, via
orexin, modulates affect and cognition in diurnal mammals. Such
knowledge is essential for designing lighting environments that pro-
mote optimal affective and cognitive functioning, and for identifying
risk factors and pharmacological targets for affective disorders and
cognitive impairments, in humans.
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