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IGHTTIME DIM LIGHT EXPOSURE ALTERS THE RESPONSES OF

HE CIRCADIAN SYSTEM
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bstract—The daily light dark cycle is the most salient en-
raining factor for the circadian system. However, in modern
ociety, darkness at night is vanishing as light pollution
teadily increases. The impact of brighter nights on wild life
cology and human physiology is just now being recognized.

n the present study, we tested the possible detrimental ef-
ects of dim light exposure on the regulation of circadian
hythms, using CD1 mice housed in light/dim light (LdimL,
00 lux:20 lux) or light/dark (LD, 300 lux:1 lux) conditions. We
rst examined the expression of clock genes in the suprachi-
smatic nucleus (SCN), the locus of the principal brain clock,

n the animals of the LD and LdimL groups. Under the en-
rained condition, there was no difference in PER1 peak ex-
ression between the two groups, but at the trough of the
ER 1 rhythm, there was an increase in PER1 in the LdimL
roup, indicating a decrease in the amplitude of the PER1
hythm. After a brief light exposure (30 min, 300 lux) at night,
he light-induced expression of mPer1 and mPer2 genes was
ttenuated in the SCN of LdimL group. Next, we examined the
ehavioral rhythms by monitoring wheel-running activity to
etermine whether the altered responses in the SCN of LdimL
roup have behavioral consequence. Compared to the LD
ontrols, the LdimL group showed increased daytime activ-

ty. After being released into constant darkness, the LdimL
roup displayed shorter free-running periods. Furthermore,
ollowing the light exposure, the phase shifting responses
ere smaller in the LdimL group. The results indicate that
ighttime dim light exposure can cause functional changes
f the circadian system, and suggest that altered circadian
unction could be one of the mechanisms underlying the
dverse effects of light pollution on wild life ecology and
uman physiology. © 2010 IBRO. Published by Elsevier Ltd.
ll rights reserved.

ey words: Per1, Per2, circadian rhythms, suprachiasmatic
ucleus, light pollution.

he circadian system, when entrained to the day–night
ycle, allows organisms to anticipate and adapt to 24-h
aily cycles of the environment, ensuring that behavioral
nd physiological responses occur during the right tempo-

Correspondence to: L. Yan, Department of Psychology and Neuro-
cience Program, 108 Giltner Hall, East Lansing, MI 48824, USA. Tel:
1-517-432-8189; fax: �1-517-432-2744.
-mail address: yanl@msu.edu (L. Yan).
bbreviations: LD, light: dark cycle; LdimL, light: dim light cycle; LL,
onstant light; LP, light pulse; OD, optical density; PRC, phase re-
c
ponse curve; RHT, retinohypothalamic tract; SCN, suprachiasmatic
ucleus; ZT, Zeitgeber time.

306-4522/10 $ - see front matter © 2010 IBRO. Published by Elsevier Ltd. All right
oi:10.1016/j.neuroscience.2010.08.009

1172
al niche. In mammals, the suprachiasmatic nucleus (SCN)
f the anterior hypothalamus serves as the principal circa-
ian clock orchestrating a vast array of rhythmic responses
hroughout the body, ranging from the sleep–wake cycle to
ene transcription (Klein et al., 1991; Hastings et al.,
003).

The environmental light–dark cycle is the most salient
ntraining factor for nearly all organisms exposed to the
aily fluctuation of sunlight, synchronizing the endogenous
lock to the local environment (Aschoff, 1960). The light
ignal, in mammals, is conveyed through the retinohypo-
halamic tract (RHT) from the retina to the SCN (Moore and
enn, 1972). Light exposure at night can reset the clock in
he SCN and consequently rhythms in behavior and phys-
ology (Daan and Pittendrigh, 1976; Moore, 1983; Meijer
nd Schwartz, 2003). This resetting is likely mediated by
he light-induced up-regulation of two putative clock genes,
er1 and Per2 (Yan, 2009).

In contrast to brief light exposures that reset the clock,
he constant presence of light (LL) alters endogenous
lock properties, profoundly affecting rhythms in the SCN
nd in the behavior of organisms. The effects of LL expo-
ure include changes in the free-running period, arrhyth-
ia and rhythm “splitting” (Aschoff, 1981). It has been

hown that the behavioral responses associated with LL
xposure are derived from disrupted synchrony and/or
ltered organization of cellular oscillators within the SCN
de la Iglesia et al., 2000; Ohta et al., 2005; Tavakoli-
ezhad and Schwartz, 2005; Yan et al., 2005). Alterations
f circadian rhythms can also be triggered by the naturally
ccurring variations in the environmental conditions as
ell. For example, the seasonal photoperiodic variation
as been shown to induce changes in electrical activity,
ene expression and spatiotemporal cellular organization
f the SCN (Inagaki et al., 2007; VanderLeest et al., 2007;
aito et al., 2008; Yan and Silver, 2008).

Given the profound effect of lighting condition on the
lock properties of the SCN, it is likely that inappropriate

ight exposures would lead to significant consequences in
he circadian system. Since the invention of electric lights,
rtificial lighting has become essential for our society.
owever, this has also altered environmental lighting con-
itions, the most noticeable changes being a brighter night.
ore than half of the world’s population is living under a
ight sky that is brighter than what would be naturally
xperienced with a full moon (Cinzano et al., 2001). In the
resent study, we investigated the effect of brighter nights
n the functions of the SCN and the consequent behavioral
esponses of animals housed in a light: dim light (LdimL)

ondition. In particular, we determined how chronic expo-

s reserved.
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ure to light at night affects the expression of the clock
enes Per1 and Per2 in the SCN, as well as the display of
vert activity rhythms in mice. The results suggest that
righter nights can alter the function of the brain clock and
he overall expression of circadian rhythms.

EXPERIMENTAL PROCEDURES

nimals

ale CD1 mice (28 days old) were purchased from Charles River
nd were randomly assigned to one of two groups. The control
roup was housed in a 12:12 h light: dark (LD, 300 lux: 1 lux)
ycle. Light phase illumination was produced by cool white fluo-
escent bulbs. A red safety light, with a maximum light intensity of
lux, was on during the dark phase to allow for animal care and
aintenance. The experimental group was housed in a 12:12 h

ight: dim light (LdimL 300 lux: 20 lux) condition, in which the dim
ight was produced by a fluorescent bulb (F34T12/CW/RS/EW,
hilips Electronics, NV, USA) wrapped with a scarlet polycarbon-
te cover (American Made Plastics Co., NJ, USA). The dim light is
ostly red/orange but contains a blue component, with the peak
avelength at 610 nm and the second peak at 440 nm

USB2000�VIS-NIR Miniature Fiber Optic Spectrometers, Ocean
ptics Inc. FL, USA). The maximum photon flux density at the

age level is 1 �mol/m2/s in dim light vs 4 �mol/m2/s in light phase
MQ-100 Quantum meter, Apogee Instruments Inc.). This dim light
as chosen because it was similar to street light (high pressure
odium lamps), which is one of the main sources of light pollution
Chepesiuk, 2009). Food and water were available ad libitum. All
xperimental procedures were approved by the Institutional Ani-
al Care and Use Committee of Michigan State University.

istological analysis

nimals from each group were group housed in their respective
ighting condition for 3 weeks prior to being used in the experi-

ents to investigate the effect of nighttime dim light exposure on
he circadian oscillation and to study the light responsiveness of
he SCN. To test the effects on circadian oscillation, animals were
acrificed at Zeitgeber times (ZT; ZT0 is lights on) 12 and 23
n�4/time point/group). Animals at ZT23 were sacrificed in either
ark (LD group) or dim light (LdimL group) condition. To evaluate

he light responsiveness, animals (n�4/group) were given a 30
in light pulse (LP, 300 lux) starting at ZT16 and were then

acrificed at ZT17.5, 90 min after the beginning of the LP. Control
nimals (n�4/group) were treated identically, but were not ex-
osed to the LP. In both experiments, mice were overdosed with
odium pentobarbital (200 mg/kg; Vortech Pharmaceutical, Ltd.,
I, USA) and perfused intracardially with 20 ml saline followed by
0 ml 4% paraformaldehyde in 0.1 M phosphate buffer. Brains
ere post-fixed for 12–18 h, and cryoprotected in 20% sucrose
vernight. Sections (40 �m) were cut through the entire SCN
sing a cryostat.

Immunocytochemistry (ICC). For the tissue collected at
T12 and 23, free-floating sections were incubated with mPER1
ntibody (1:5000, gift of Dr. D. R. Weaver, University of Massa-
husetts, MA, USA, now available as Millipore antibody AB2201)
nd processed with avidin–biotin-immunoperoxidase technique
sing 3,3=-Diaminobenzidine tetrahydrochloride (DAB, Sigma-
ldrich, St. Louis, MO, USA) as the chromogen. To deal with
otential variability in independent ICC runs, animals to be com-
ared directly were processed together with unique cut to mark
ach brain. After the ICC reaction, sections were mounted on
lides, dehydrated with alcohol rinses, cleared with xylene, and
overslipped with Permount (Fisher Scientific, Fair Lawn, NJ,

SA). A
In situ hybridization. For the tissue collected after the LP
nd the control (ZT17.5), in situ hybridization was performed as
escribed previously (Yan et al., 1999; Yan and Silver, 2002).
riefly, sections were processed with proteinase K at 37 °C and
.25% acetic anhydride at room temperature for 10 min. The two
lternate sets of sections were then incubated in hybridization
uffer containing the Dig-labeled Per1 or Per2 cRNA probes (0.1
g/1 ml) overnight at 60 °C in a water bath shaker. After a
igh-stringency post hybridization wash, sections were treated
ith RNase A, and then were further processed for immunode-

ection with a nucleic acid detection kit (Boehringer Mannheim,
ndianapolis, IN, USA). Sections were incubated in a blocking
eagent diluted 1:100 in buffer 1 for 1 h at room temperature, then
ncubated at 4 °C in an alkaline phosphatase-conjugated digoxi-
enin antibody diluted 1:2000 in buffer 1 for 3 days. On the
ollowing day, sections were then incubated in a solution contain-
ng nitroblue tetrazolium salt (0.34 mg/mL; Roche, Indianapolis,
N, USA) and 5-bromo-4-chloro-3-indolyl phosphate toluidinium
alt (0.18 mg/mL; Roche, Indianapolis, IN, USA) for 14 h. The
olorimetric reaction was halted by immersing the sections in TE
uffer (10 mm Tris–HCl containing 1 mm EDTA, pH 8.0). Sections
ere mounted and coverslipped as described above.

Data analysis. For quantification, images of serial sections
hrough the SCN were captured using a CCD video camera
CX9000, MBF bioscience, Williston, VT, USA) attached to a light
icroscope (Zeiss, Gottingen, Germany). Number of mPER1-

mmunoreactivity (ir) cells was counted bilaterally in three mid-
CN sections using NIH Image J program. At ZT23, numbers of

he PER1-ir in the SCN were counted in the ventral and dorsal
egions by dividing the nucleus with a straight horizontal line
rossing the center of the nucleus, and the average was used to
epresent the value for each animal. A two-way ANOVA
time�lighting condition) followed by post-hoc t-test was used to
ssess the effect of lighting condition on the expression of PER1.
he expression of mPer1 and mPer2 mRNA was also quantified
sing the NIH Image J program. Relative optical density (ROD),
ssessing the mean gray value per pixel, was used to quantify the

ntensity of the signal in the SCN compared with the adjacent
ypothalamic area. Three mid-SCN sections were measured, and
he average difference between the density measurement of the
CN and the background was the ROD value for each animal.
wo-way ANOVA followed by post-hoc t-test was performed to
ssess the effect of nighttime dim light housing on the light-

nduced expression of mPer1 or mPer2 (LP�lighting condition).

ehavioral anaylsis

nimals (n�10 per condition) were singly housed in plexiglass
ages (34�28�17 cm3) equipped with running wheels (26 cm
iameter, 8 cm width). Wheel revolutions were recorded in 5-min
ins using VitalView (Minimitter, Inc.). After 3 weeks of entraining
o the lighting cycle and habituating to the apparatus, animals from
oth LD and LdimL group were transferred into constant darkness
DD) for 2 weeks. Several circadian parameters such as the total
aytime and nighttime activities, time for activity onset and offset
ere examined to investigate the effect of the different nighttime

ight intensities on behavioral activity rhythms and entrainment.
he onset and offsets were determined by creating actograms
sing the ClockLab (Actimetrics, Inc.). All parameters were aver-
ged across the 7 days in the third week of either LD or LdimL
ondition for each animal. The free-running period was calculated
ased on data from first week in DD using the Clocklab program,
hich estimates the period based on activity onset. The animals
ere then re-entrained to the LD or LdimL cycle for 3 weeks, and

hen were examined for their response to light. Specifically, they
ere given a light pulse (LP, 300 lux, 30 min) at ZT16 and then
ubmersed into DD for the subsequent week (Aschoff, 1965;

lbrecht et al., 2001). Phase shifts were calculated based on the
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ctivity onset from 7 days before and after the LP. To assess the
ffect of nighttime dim light and/or LP on the behavioral parame-

ers t-test or two-way ANOVA were performed.

RESULTS

ffect of nighttime dim light on the daily oscillation
f the SCN

ER1 expression was high at ZT12 and low at ZT23 under
oth lighting condition (Fig. 1). At ZT12 (Fig. 1A, left col-
mn), densely packed PER1-ir nuclei were seen through-
ut the SCN in both LD and LdimL. At ZT23, scattered
ER1-ir nuclei were seen at the center to dorsal but absent

n the ventral region of the SCN in LD, showing the distri-
ution characteristic to this time as previously reported
King et al., 2003). However, for the animals housed in
dimL, PER1-ir nuclei were distributed in both dorsal and
entral regions. Quantitative analysis revealed a significant
ime effect and a dim light effect (Fig. 1B, two-way ANOVA,
ime effect: F�509.8, P�0.01; dim light effect: F�5.3,
�0.05; interaction: F�1.9, P�0.05). Post-hoc compari-
on revealed that the difference in the numbers of PER1-ir
uclei between LD and LdimL conditions were not signifi-

ig. 1. Representative photomicrographs (A) and quantitative analy-
is (B, C) of expression of PER1 in the SCN of animals in LD and
dimL at ZT12 and 23. Scale bar�100 �m. White dashed line indi-
ates the outline of the SCN and the ventral and dorsal region defined
i
t ZT23 in the present study. The data are presented as mean�SEM,
�4. * P�0.05.
ant at ZT12 (t-test, P�0.05), but significant at ZT23
t-test, P�0.01). To further analyze the difference in the
patial distribution of PER1 at ZT23 between the two
roups, PER1-ir nuclei were counted in ventral and dorsal
egions of the SCN (Fig. 1C). Two-way ANOVA revealed a
ignificant effect on lighting condition (F�28.6, P�0.05), a
arginally significant effect on region (F�5.56, P�0.056).
he interaction between the two effects was not significant
F�4.6, P�0.05). Post-hoc comparison found a significant
ffect of light condition in the ventral region (t-test,
�0.05).

ffect of nighttime dim light on the
ight-responsiveness of the SCN

n LP at night induced both mPer1 and mPer2 expression
n the SCN (Fig. 2). For mPer1 (Fig. 2A), at ZT17.5 without
n LP, mPer1 expression was absent in the SCN of ani-
als housed in LD, but was low to moderate in the SCN of
nimals in LdimL. After an LP, mPer1 expression was

ntense in the SCN of LD animals, but only moderate in that
f LdimL animals. Quantitative analysis (Fig. 2B) by two-
ay ANOVA revealed a significant interaction between LP
nd lighting conditions (F�12.0, P�0.01). Tests of simple
ain effect of dim light at night found a significant effect in
P group (t-test, P�0.01), but not in the no-LP controls
t-test, P�0.05). Tests of simple main effect of LP revealed
ignificant effect in both LD and LdimL groups (t-test,
�0.01).

For mPer2 (Fig. 2C), the expression in the animals
ithout an LP (ZT17.5) was absent under LD but moderate
nder LdimL condition. After an LP, intense mPer2 expres-
ion was observed in the SCN of animals housed in both
onditions. Quantitative analysis (Fig. 2D) revealed a sig-
ificant interaction between LP and lighting conditions
F�25.4, P�0.01). Tests of simple main effect of LP found
ignificant effect in both LD and LdimL conditions (t-test,
�0.05). Test of simple main effect of lighting condition

ound significant effect in no LP control group (t-test,
�0.05), but not in the LP group (t-test, P�0.05).

ffect of nighttime dim light on behavioral responses

e next examined the behavioral consequence of the
ltered SCN responses from LdimL condition (Fig. 3). An-

mals were entrained under both LD and LdimL conditions
nd showed free-running rhythms after being released into
onstant darkness (Fig. 3A). Quantitative analysis re-
ealed that during the daytime animals in the LdimL con-
ition were more active, but at night there was no signifi-
ant difference in the activity level between the two groups
t-test, day time activity: t-test, P�0.01; night time activity:
-test, P�0.05; Fig. 3B). There was no difference in the
emporal distribution of the daytime activities between the
wo groups (Two-way ANOVA, effect of time: F�36.36,
�0.01; effect of lighting condition: F�4.2, P�0.05; inter-
ction: F�3.05, P�0.05). In both groups, the majority of

he daytime activities occurred in the last hour particularly
he last 15 min prior to the dark or dim light phase (LD
roup: 54.4�13.6%, LdimL group: 69.8�4.6%), suggest-
ng an entrainment effect. Animals in the LdimL condition
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lso showed earlier onset and offset for their nighttime
ctivities (t-test, P�0.05, Fig. 3B). However, there was no

ig. 2. Representative photomicrographs (A, C) and quantitative analy
roup at ZT 17.5 without a light pulse (no LP) and after a light pulse at
P�0.05.

ig. 3. Representative actograms (A) and quantitative analysis (B) of t
rom two animals, one in each condition. The gray shadow indicate

uantitative analysis of daytime activity, nighttime activity, time for activity onse
re presented as mean�SEM, n�7 for LP in LdimL, n�10 for the rest of the d
ifference in the duration of activity (t-test, P�0.59, data
ot shown). When the animals were placed into constant

) of expression of Per1 and Per2 in the SCN of animals in LD or LdimL
). Scale bar�100 �m. The data are presented as mean�SEM, n�4.

ioral parameters. (A) The actograms show the wheel-running activities
k phase, the stars in the lower panel represent the light pulse. (B)
sis (B, D
he behav
s the dar
t and offset, free-running period and phase shift after an LP. The data
ata points. * P�0.05.
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D. Shuboni and L. Yan / Neuroscience 170 (2010) 1172–11781176
arkness, the LdimL groups had a significantly shorter
ree-running period than LD group (t-test, P�0.05, Fig.
B). The transition from either LD or LdimL to DD produced

ittle phase shifting, while an LP at ZT16 produced phase
hift in both groups (Fig. 3A). The magnitude of shifts in the
dimL condition was smaller than those in the LD condition
Two-way ANOVA, LP effect: P�0.01; effect of condition:
�0.05; interaction: P�0.05, Fig. 3B). It should be noted

hat in the LdimL group three animals showed advances
nstead of delays and were removed from this analysis.

DISCUSSION

he results from the present study revealed that both the
ime-keeping and entrainment functions of the SCN were
ltered by a brighter night and that these changes had
onsequences downstream, in the form of changes in the
vert behavioral rhythms of the animals. One of the main
ndings of the present study was an elevated baseline
xpression of clock genes in the SCN. At ZT23, which is

he trough time for PER1 expression, the number of
ER1-ir cells in the LdimL group was significantly higher

han that in the LD group (Fig. 1). The increase in PER1
xpression occurred mainly in the ventral portion of the
CN, where the nucleus receives dense retinal input

Abrahamson and Moore, 2001). Although the number of
ER1-ir cells at the peak time (ZT12) remained the same
etween the two groups, the increased PER1 expression
t the baseline level in LdimL group suggests that there
as a reduction in the amplitude of circadian oscillation
ithin the SCN. The increased baseline level was also
bserved for the expression of Per2 mRNA, at ZT17.5 in
he animals that did not receive an LP (no-LP group).

The mechanisms underlying how the brighter nights of
he current LdimL condition affected the circadian oscilla-
ion within the SCN is unclear and warrants further inves-
igation. It is possible that the elevated light intensity at
ighttime increased the basal level of clock gene expres-
ion within individual SCN neuron. However, we favor the
lternative hypothesis that LdimL housing disrupted the

ntercellular coupling of the SCN neural network causing
esynchrony among the oscillator cells. The SCN sits at
he top of the circadian hierarchy and conveys temporal
nformation to other brain regions and to the periphery,
nsuring coherent circadian oscillations throughout the
ody (Davidson et al., 2003; Hastings et al., 2003). The
obust circadian rhythms in the expression of clock genes
nd the downstream events are essential for effective
utput control. The attenuation in the amplitude of the
lock gene expression under LdimL may indicate a weak-
ning in the time-keeping function of the SCN, which can
ubsequently cause an overall deregulation of the entire
ircadian system.

By monitoring wheel-running activity, we observed an
lteration in behavioral rhythms as revealed by the in-
rease in daytime activity in the LdimL group. Although it is
urrently unclear what SCN signals control behavioral
hythms, the output signals from the SCN are expected to

nhibit the daytime activity in nocturnal animals (Silver et d
l., 1996; Kramer et al., 2001; Cheng et al., 2002; Lambert
t al., 2005; Kraves and Weitz, 2006). Therefore, the in-
reased daytime activity observed in the LdimL group likely
eflects an overall decline in the output control of the
ircadian system, possibly originating from a dampened
CN signal. About 70% of the daytime activity in the LdimL
roup occurred prior to dark onset, suggesting that there is
lso an effect on the entrainment mechanism. The claim of
n effect of night light exposure on entrainment is also
upported by the differences in the time of activity onset
nd offset between the groups. The free-running periods
iffered between the two groups as well (Fig. 3). Since
oth the LD and LdimL groups were released into the
ame total darkness, the free-running periods are likely
eflective of the after-effects of their prior lighting
onditions.

The results on activity onset and offset time, as well as
hose about the free-running period collectively suggest
hat the endogenous rhythm of the LD and LdimL group
ere at slightly different phases. This raises the question
f whether the phase differences caused the variation in
ER1 expression. It should be noted though, that the
ifferences in phase relationship between the two groups

s relatively small, only about 20 min. Using male CD1
ice, the same strain as in the present study, it has been

hown that the level of PER1 expression at ZT22 and ZT24
re not significantly different (Hastings et al., 1999; Field
t al., 2000). Therefore, it is unlikely that the difference in
ER1 expression seen at ZT23 was due to a phase differ-
nce at the time of sampling, but rather signals an alter-
tion in the intrinsic clock function.

Without any external cues, the endogenous rhythms
enerated in the SCN are not exactly 24 h, therefore, the
ircadian clock in the SCN has to be reset daily by envi-
onmental light in order to maintain synchrony with the
ocal time (Aschoff and Pohl, 1978). The photic entrain-

ent of the circadian clock has been well characterized at
ultiple levels, including behavioral, physiological and mo-

ecular responses (Pittendrigh and Daan, 1976; Moore,
983; Meijer and Schwartz, 2003; Yan, 2009). A brief light
xposure given in early or late night can cause phase
elays or advances, respectively, which are likely medi-
ted by the acute induction of Per1 and Per2 genes. By
ssessing the light-induced expression of mPer1 and
Per2 gene and behavioral phase shifts, the results of this

tudy revealed attenuated light responsiveness in the an-
mals housed under brighter nights. Within the SCN, after
n LP, the levels of light-induced expression of Per1 and
er2 genes were both lower in the LdimL group than those

n the LD group, indicating an attenuated light-responsive-
ess of the SCN. The reduced responsiveness was also
bserved at the behavioral level, animals in the LdimL
roup shifted less in response to an LP (Fig. 3). The
agnitude of phase shifts can be affected by photoperiod

o which the animals are exposed (Pittendrigh et al., 1984;
vans et al., 2004). In nocturnal animals, the duration of

heir daily activity expands in short day and compresses in
ong day (Refinetti, 2002). However, the duration of their

aily activity for the LdimL animals was not different from
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he LD animals, suggesting photoperiodic effects were not
he possible cause underpinning the smaller phase shifts
n LdimL group. The free-running period of animals in
dimL group was shorter than that of animals in the LD
roup. The shortening in free-running period may alter the
hase response curve (PRC) of these animals, such that

he pulse of light would then fall at a different portion of the
RC eliciting a different response. The changes in PRC
re further suggested by the fact that in the LdimL group,

hree out of 10 animals showed phase advances instead of
elays. In addition, changes in free-running period caused
y photoperiod length aftereffects and by the intensity of

he light stimuli, have been shown to cause deviations in
esponse to light, altering the magnitude of the shift (Daan
nd Pittendrigh, 1976; Sharma, 2003). Taken together, our
esults indicate that dim light at night alters the light re-
ponsiveness of the circadian system.

This altered light responsiveness could be derived
rom changes in input pathways or more likely, the intrinsic
roperties of the SCN. Melanopsin-containing ganglion
ells along with rod and cone photoreceptors constitute the
hree groups of light-detecting cells in the retina (Hattar
t al., 2003; Panda et al., 2003). Photoreceptor transduc-
ion can be modulated by changes in the light intensity, and
he sensitivity of the photoreceptor can also be reduced by
revious light exposure due to photopigment bleaching
Fain et al., 2001). These processes can potentially affect
he photic input in the LdimL group. The other factor ulti-
ately underpinning the altered light responsiveness is the

lock itself. The increased level of clock gene expression
t the through time in the LdimL group indicates a less
oherent phase relationship among SCN neurons. It has
een shown that the SCN neuronal network organization
an determine the phase shifting capacity of the circadian
lock (vanderLeest et al., 2009). In mice housed in long or
hort photoperiods, not only the amplitude of the behav-
oral phase shifts following an LP differs, the shifts of
hythms in electrical activities of the SCN following N-
ethyl-D-aspartate (NMDA) treatment also show different

esponses that correlate to the behavior. The results sug-
est that the differences in behavioral phase shifts are
erived from the SCN rather than the alteration in the input
athways.

In contrast to the bright light exposure, the effect of
immer light during nighttime is less understood. The dim

ight in the present study was largely dimmed by spectrum
hift, as the photon flux was about only four times lower,
ut the peak wavelength was at 610 nm opposed to the
hite light in daytime. In a series of studies, Gorman and
olleagues have investigated the effects of dim narrow-
and green light (�0.01 lux, peak ��560 nm) and have
hown that the dim green light at night can facilitate the
e-entrainment of rhythms following a shift of the LD cycle
Gorman et al., 2006; Evans et al., 2007, 2009; Frank et
l., 2010). These intriguing results suggest that the dimly lit
ight, even below the threshold for circadian visual system,

s not functionally equivalent to the complete darkness.
Increase in ambient light at night can affect ecology of
ildlife and lead to health consequences for humans
Chepesiuk, 2009; Hastings et al., 2003; Haus and Smo-
ensky, 2006; Erren and Reiter, 2009). The benefits of
rtificial lighting to our society are obvious and enormous,
owever, the impact of nocturnal light on our body needs to
e acknowledged and understood. Our results provide
vidence of the behavioral and neurobiological effects
aused by unnaturally bright nights on the circadian
ystem.
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